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Abstract 

Lattice discretizations of continuous manifolds are common tools used in a variety of physical 
contexts. Conventional discrete approximations, however, cannot capture all aspects of the original 
manifold, notably its topology. In this paper we discuss an approximation scheme due to Sorkin 
(1991) which correctly reproduces important topological aspects of continuum physics. The ap- 
proximating topological spaces are partially ordered sets (posets), the partial order encoding the 
topology. Now, the topology of a manifold M can be reconstructed from the commutative C*- 
algebra C(M) of continuous functions defined on it. In turn, this algebra is generated by continuous 
probability densities in ordinary quantum physics on M. The latter also serves to specify the do- 
mains of observables like the Hamiltonian. For a poset, the role of this algebra is assumed by a 
noncommutative Cc-algebra A. This fact makes any poset a genuine ‘noncommutative’ (‘quantum’) 
space, in the sense that the algebra of its ‘continuous functions’ is a noncommutative C*-algebra. 
We therefore also have a remarkable connection between finite approximations to quantum physics 
and noncommutative geometries. We use this connection to develop various approximation methods 
for doing quantum physics using d. 
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1. Introduction 

Realistic physical theories require approximations for the extraction of their predictions. 
A powerful approximation method is the discretization of continuum physics where man- 
ifolds are replaced by a lattice of points. This discretization is particularly effective for 
numerical work and has acquired a central role in the study of fundamental physical theo- 
ries such as QCD [l] or Einstein gravity [2]. 

In these approximations, a manifold is typically substituted by a set of points with discrete 
topology. The latter is entirely incapable of describing any significant topological attribute 
of the continuum, this being equally the case for both local and global properties. As a 
consequence, all topological properties of continuum physical theories are lost. For example, 
there is no nontrivial concept of winding number on lattices with discrete topology and hence 
also no way to associate solitons with nonzero winding numbers in these approximations. 

Some time ago, Sorkin [3] studied a very interesting method for finite approximations 
of manifolds by certain point sets in detail. These sets are partially ordered sets (posets) 
and have the ability to reproduce important topological features of the continuum with 
remarkable fidelity (see also Ref. [4]). 

Subsequent researches [5] developed these methods and made them usable for approx- 
imate computations in quantum physics. They could thus become viable alternatives to 
computational schemes like those in lattice QCD [I]. This approximation scheme is briefly 
reviewed in Section 2. 

In this paper, we develop the poset approximation scheme in a completely novel direction. 
In quantum physics on a manifold M, a fundamental role is played by the C*-algebra 

C(M) of continuous functions on M. Indeed, it is possible to recover M, its topology and 
even its Coo -structure when this algebra and a distinguished subalgebra are given [6,7]. It is 
also possible to rewrite quantum theories on M by working exclusively with this algebra, the 
tools for doing calculations efficiently also being readily available [&lo]. All this material 
on C(M) is described in Section 3 with particular attention to its physical meaning. 

In Section 4 we show that the algebra A replacing C(M), when M is approximated by a 
poset, is an infinite-dimensional noncommutative C*-algebra. The poset and its topology are 
recoverable from the knowledge of A. This striking result makes any poset a genuine ‘non- 
commutative’ (‘quantum’) space, in the sense that the algebra of its ‘continuous functions’ 
is a noncommutative C*-algebra. This explains also our use of the name ‘noncommutative 
lattices’ for these objects. 3 

We thus have a remarkable connection between topologically meaningful finite approx- 
imations to quantum physics and noncommutative geometries. It bears emphasis that this 
conclusion emerges in a natural manner while approximating conventional quantum the- 
ory. Therefore the interest in noncommutative geometry for a physicist need not depend on 
unusual space-time topologies like the one used by Connes and Lott [lo] in building the 
standard model. Furthermore, these quantum models on posets are of independent interest 

3 In the following we will use the phrases ‘poset’ and ‘noncommutative lattice’ in an interchangeable way. 
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and not just as approximations to continuum theories, as they provide us with a whole class 
of examples with novel geometries. 4 

The C*-algebras for our posets are, as a rule, inductive limits of finite-dimensional ma- 
trix algebras, being examples of “approximately finite dimensional” algebras [6,12,13]. 
Therefore we can approximate A by finite-dimensional algebras and in particular by a com- 
mutative finite-dimensional algebra C(d). Their elements can be regarded as continuous 
“functions” to encode the topology of the latter. The algebra C(d) is also strikingly sim- 
ple, so that it is relatively easy to build a quantum theory using C(d). We describe these 
approximations in Section 4.2. 

In Section 5 we discuss many aspects of quantum physics based on A, drawing on known 
mathematical methods of the noncommutative geometer and the C*-algebraist. 

Section 6 deals with a concrete example having nontrivial topological features, namely 
the poset approximation to a circle. We establish that global topological effects can be 
captured by poset approximations and algebras C(d) by showing that the “@-angle” for a 
particle on a circle can also be treated using C(d). 

In Section 7 we show how the CL-algebra for a poset can be generated by a commutative 
subalgebra and a unitary group. We then argue that the algebra C(d) above can be recovered 
from this structural result and a gauge principle. 

The article concludes with some final remarks in Section 8. 

2. The finite topological approximation 

Let M be a continuous topological space like, for example, the sphere SN or the Euclidean 
space RN. Experiments are never so accurate that they can detect events associated with 
points of M, rather they only detect events as occurring in certain sets Ok. It is therefore 
natural to identify any two points x, y of M if they can never be separated or distinguished 
by the sets Ok. 

We assume that the sets 0~ cover M, 

that each 0~ is open and that 

u = lOA1 (2.2) 

is a topology for M [ 141. This implies that both 0~. U 0, and 0,: n 0, are in U if Ok,, E U. 
This hypothesis is physically consistent because experiments can isolate events in 0,~ U 0, 
and 0~ rl 0, if they can do so in 0~ and 0, separately, the former by detecting an event 
in either 0~ or O,, and the latter by detecting it in both 0~ and 0,. 

4 Dimakis and Miiller-Hoissen [I 11 have recently discussed a new approach to differential calculus and 
noncommutative geometry on discrete sets which has interesting connections with posets. 
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Fig. 1. (a) shows an open cover for the circle S’; and (b) the resultant discrete space P4(S1). 4~ is the map 
(2.4). 

Given x and y in M, we write x - y if every set 0~ containing either point x or y 
contains the other too: 

x - y means x E 0~ * y E 0~. for every 0~. (2.3) 

Then - is an equivalence relation, and it is reasonable to replace M by Ml - E P(M) to 
reflect the coarseness of observations. It is this space, obtained by identifying equivalent 
points and equipped with the quotient topology explained later, that will be our approxima- 
tion for M. 

We assume that the number of sets 0,: is finite when M is compact so that P(M) is an 
approximation to M by a finite set in this case. When M is not compact, we assume instead 
that each point has a neighbourhood intersected by only finitely many 0~ so that P(M) is 
a “finitary” approximation to M [3]. In the notation we employ, if P(M) has N points, we 
sometimes denote it by PN(M). 

The space P(M) inherits the quotient topology from M [14].This is defined as follows. 
Let @ be the map from M to P(M) obtained by identifying equivalent points. Then a set in 
P(M) is declared to be open if its inverse image for @ is open in M. The topology generated 
by these open sets is the finest one compatible with the continuity of @. 

Let us illustrate these considerations for a cover of M = S’ by four open sets as in Fig. la. 
In this figure, 01.3 c 02 flO4. Fig. lb shows the corresponding discrete space P4(S’), the 
points xi being images of sets in St. The map @ : S’ -+ P4(S1) is given by 

01 + Xl, 02 \ LO2 l-l 041 + x2. 03 + x3, 04 \ 102 n 041+ ~4. (2.4) 

The quotient topology for P4(St) can be read off from Fig. 1, the open sets being 

bl}, 1x31, {xl, x2, x31, (Xl, X4? x31, (2.5) 

and their unions and intersections (an arbitrary number of the latter being allowed as P4(S1) 

is finite). 
Notice that our assumptions allow us to isolate events in certain sets of the form 0~ \ [ 0~ n 

O,] which may not be open. This means that there are in general points in P(M) coming 
from sets which are not open in M and therefore are not open in the quotient topology. 

Now in a Hausdorff space [ 141, for any two distinct points x and y there exist open sets 
0, and O,, containing x and y respectively, such that 0, n 0, = 0. A finite Hausdorff 
space necessarily has the discrete topology and hence each of its points is an open set. So 
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Fig. 2. The Hasse diagram for the circle poset Pd(S’). 

P(M) is not Hausdorff. However, it can be shown [3] that it is a To space [14]. To spaces 
are defined as spaces in which, for any two distinct points, there is an open set containing 
at least one of these points and not the other. For example, given the points XI and x2 of 
P4(S1), the open set {xl) contains xt and not x2, but there is no open set containing x2 and 
not xi. 

In P(M), we can introduce a partial order 5 [4,15,16] by declaring that: 

X5Y if every open set containing y contains also x. 

P(M) then becomes a partially ordered set or aposet. Later, we will write x -C y to indicate 
thatxiyandxfy. 

Any poset can be represented by a Hasse diagram constructed by arranging its points at 
different levels and connecting them using the following rules: 
(1) if x -C y, then x is at a lower level than y; 
(2) if x -C y and there is no z such that x < z < y, then x is at the level immediately 

below y and these two points are connected by a line called a link. 
For Pa(S’), the partial order reads 

Xl ZS x2, Xl YS x4, x3 5 x2, x3 5 x4, (2.6) 

where we have omitted writing the relations xj 5 xi. The corresponding Hasse diagram is 
shown in Fig. 2. 

In the language of partially ordered sets, the smallest open set 0, containing a point 
x E P(M) consists of all y preceding x: 0, = {y E P(M): y  5 x). In the Hasse diagram, 
it consists of x and all points we encounter as we travel along links from x to the bottom. 
In Fig. 2, this rule gives (xl, x2, x3) as the smallest open set containing x2, just as in (2.5). 

As another example, Fig. 3 shows a cover of S’ by 2N open sets Oj and the Hasse 
diagram of its poset &N(S’). 

As one example of a three-level poset, consider the Hasse diagram of Fig. 4 for a finite 
approximation Ps(S2) of the two-dimensional sphere S2 derived in [3]. Its open sets are 
generated by 

(xl). (x31, {X1.X2,X3). {X1,X4,X3), 

{X~VX~,X~>X~,X~), (Xl, x2, -%T x4, x31 

by taking unions and intersections. 

(2.7) 

We conclude this section by recalling that one of the most remarkable properties of a 
poset is its ability to accurately reproduce the fundamental group [17] of the manifold it 
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Fig3,In(a)isshownacoveringofS’ byopensets 0; with03 = 02nO4,05 = 04n06,...,01 = 02NnO2; 
(b) is the Hasse diagram of its poset. 

Fig. 4. The Hasse diagram for the two-sphere poset P6(S2) 

approximates. For example, as for S’ , the fundamental group of PN (S’) is Z whenever N 2 
4 [3]. It is this property that allowed us to argue in [5] that global topological information 
relevant for quantum physics can be captured by such discrete approximations. We will show 
this result again in Section 6. There we will consider the “O-angle” quantizations of a particle 
moving on S’ and establish that they can also be recovered when S’ is approximated by 
PN(S’). This result will be demonstrated by constructing suitable line bundles on PN(S~). 

3. Topology from quantum physics 

In conventional quantum physics, the configuration space is generally a manifold when 
the number of degrees of freedom is finite. If M is this manifold and X the Hilbert space 
of wave functions, then 7-L consists of all square integrable functions on M for a suitable 
integration measure. A wave function $ is only required to be square integrable. There is 
no need for $ or the probability density @*I$ to be a continuous function on M. Indeed 
there are plenty of noncontinuous I+? and r,k*$r. Wave functions of course are not directly 
observable, but probability densities are, and the existence of noncontinuous probability 
densities have potentially disturbing implications. If all states of the system are equally 
available to preparation, which is the case if all self-adjoint operators are equally observable, 
then clearly we cannot infer the topology of M by measurements of probability densities. 

It may also be recalled in this connection that any two infinite-dimensional (separable) 
Hilbert spaces Xi and Hz are unitarily related. (Choose an orthonormal basis {hf)}, (n = 
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0, 1,2, . ..)for’Fli (i = 1, 2).ThenaunitarymapU : 711 + ‘Hzisdefinedby U/r:‘) = hL2).) 
They can therefore be identified, or thought of as the same. Hence the Hilbert space of states 
in itself contains no information whatsoever about the configuration space. 

It seems however that not all self-adjoint operators have equal status in quantum theory. 
Instead, there seems to exist a certain class of privileged observables PC3 which carry 
information on the topology of M and also have a special role in quantum physics. This set 
PO contains operators like the Hamiltonian and angular momentum and particularly also 
the set of continuous functions C(M) on M, vanishing at infinity if M is noncompact. 

In what way is the information on the topology of M encoded in PO? To understand 
this, recall that an unbounded operator such as a typical Hamiltonian H cannot be applied 
on all vectors in ‘H. Instead, it can be applied only on vectors in its domain D(H), the 
latter being dense in ‘H [ 181. In ordinary quantum mechanics, D(H) typically consists of 
twice-differentiable functions on M with suitable fall-off properties at cc in case M is 
noncompact. In any event, what is important to note is that if IJ?, x E D(H) in elementary 
quantum theory, then $*x E C(M). A similar property holds for the domain D of any 
unbounded operator in PO: if $, x E D, then $r*x E C(M). It is thus in the nature of 
these domains that we must seek the topology of M. 5 

We have yet to remark on the special physical status of PO in quantum theory. Let & be 
the intersection of the domains of all operators in PO. Then it seems that the basic physical 
properties of the system, and even the nature of M, are all inferred from observations of the 
privileged observables on states associated with E. 6 

This discussion shows that for a quantum theorist, it is quite important to understand 
clearly how M and its topology can be reconstructed from the algebra C(M). Such a re- 
construction theorem already exists in the mathematical literature. It is due to Gel’fand and 
Naimark [6], and is a basic result in the theory of C*-algebras and their representations. Its 
existence is reassuring and indicates that we are on the right track in imagining that it is 
PO which contains information on M and its topology. 

We should point out the following in this regard however: it is not clear that the specific 
mathematical steps one takes to reconstruct the manifold from the algebra have a counterpart 
in the physical operations done to reconstruct it from observations. 

Let us start by recalling that a C*-algebra A, commutative or otherwise, is an algebra 
with a norm ]I I] and an antilinear involution * such that lbll = Ila*ll , lla*all = lla*ll llall 
and (ab)* = b*u* for a, b E A. The algebra A is also assumed to be complete in the given 
norm. 

Examples of C*-algebras are: 
(1) The (noncommutative) algebra of n x n matrices T with T* given by the hermitian 

conjugate of T and the squared norm ]]T]]2 being equal to the largest eigenvalue of 
T*T. 

5 Our point of view about the manner in which topology is inferred from quantum physics was developed 
in collaboration with G. Marmo and A. Simoni. 

6 Note in this connection that any observable of PO restricted to & must be essentially self-adjoint [IS]. 
This is because if significant observations are all confined to states given by &, they must be sufficiently 
numerous to determine the operators of PO uniquely. 
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(2) The (commutative) algebra C(M) of continuous functions on a Hausdorff topolog- 
ical space M (vanishing at infinity if M is not compact), with * denoting complex 
conjugation and the norm given by the supremum norm, ]I f I] = supXEM If(x)\. 

It is the latter example, establishing that we can associate a commutative C*-algebra to 
a Hausdorff space, which is relevant for the Gel’fand-Naimark theorem. The Gel’fand- 
Naimark results then show how, given any commutative C*-algebra C, we can reconstruct 
a Hausdorff topological space M of which C is the algebra of continuous functions. 

We now explain this theorem briefly. Given such a C, we let M denote the space of 
equivalence classes of irreducible representations (IRRs), 7 also called the structure space, 
of c.* The C*-algebra C being commutative, every IRR is one dimensional. Hence, if 
n E M and f E C!, the image x(f) of f in the IRR defined by x is a complex number. 
Writing x(f) as f(x). we can therefore regard f as a complex-valued function on M with 
the value f(x) at x E M. We thus get the interpretation of elements in C as @-valued 
functions on M. 

We next topologise M by declaring a subset of M to be closed if it is the set of zeros 
of some f E C. (This is natural to do since the set of zeros of a continuous function is 
closed.) The topology of M is generated by these closed sets, by taking intersections and 
finite unions. It is called the hull kernel or Jacobson topology [6]. 

Gel’fand and Naimark then show that the algebra C(M) of continuous functions on M 
is isomorphic to the starting algebra C. It is therefore the case that the commutative C*- 
algebra C which reconstructs a given M in the above fashion is unique. Also the requirement 
C = C(N) uniquely fixes N up to homeomorphisms. In this way, we recover a topological 
space M, uniquely up to homeomorphisms, from the algebra C. 9 

We next briefly indicate how we can do quantum theory starting from C(M) = C. 
Elements of C are observables, they are not quite wave functions. The set of all wave 

functions forms a Hilbert space ti. Our first step in constructing 7& essential for quantum 
physics, is the construction of the space E which will serve as the common domain of all 
the privileged observables. 

The simplest choice for & is C itself. lo With this choice, C acts on E, as C acts on itself by 
multiplication. The presence of this action is important as the privileged observables must 
act on E. Further, for +, x E E, $r*x E C, exactly as we want. 

Now Gel’fand and Naimark have established that it is possible to define an integration 
measure dw over the structure space M of C, such that every f E C has a finite integral. A 

7 The trivial IRR given by C + (0) is not included in M. It will therefore be ignored here and hereafter. 
8 Some readers might be more familiar with a slightly different construction, where M is taken to be the space 

of maximal two-sided ideals of C instead of the space of irreducible representations. These two constructions 
agree because for a commutative C*-algebra, not only are the kernels of irreducible representations maximal 
two-sided ideals, but also any maximal two-sided ideal is the kernel of an irreducible representation [6]. 

9 We remark that more refined attributes of M such as a P -structure, can also be recovered using only 
algebras if more data are given. For the Coo -structure, for example, we must also specify an appropriate 
subalgebra f?(M) of C(M). The CDs-structure on M is then the unique Coo -structure for which the elements 
of C?‘(M) are all the Coo-functions [7]. 
lo Differentiability requirements will in general further restrict &. As a mle we will ignore such details in 

this article. 
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scalar product (. , .) for elements of E can therefore be defined by setting 

($7 xl = s Wx)(1Cr*x)(x). 
M 

(3.1) 

The completion of the space E using this scalar product gives the Hilbert space 7-1. 
The final set-up for quantum theory here is conventional. What is novel is the shift in 

emphasis to the algebra C. It is from this algebra that we now regard the configuration M 
and its topology as having been constructed. 

There is of course no reason why I should always be C. Instead it can consist of sections 
of a vector bundle over M with a C-valued positive definite sesquilinear form (.;) . (The form 
(., .) is positive definite if (~,a) is a nonnegative function for any Q E E, which identically 
vanishes iff 01 = 0.) The scalar product is then written as 

(@I, x) = J ddX)(1Cr, x)(x). 
M 

(3.2) 

The completion of E using this scalar product as before gives ‘If. 

4. The noncommutative geometry of a noncommutative lattice 

4.1. The noncommutative algebra of a noncommutative lattice 

In the preceding sections we have seen how a commutative C*-algebra reconstructs a 
Hausdorff topological space. We have also seen that a poset is not Hausdorff. It cannot 
therefore be reconstructed from a commutative C*-algebra. It is however possible to recon- 
struct it, and its topology, from a noncommutative C*-algebra. 

Let us first recall a few definitions and results from operator theory [ 181 before outlining 
this reconstruction theorem. An operator in a Hilbert space is said to be of finite rank if 
the orthogonal complement of its null space is finite dimensional. It is thus essentially 
like a finite-dimensional matrix as regards its properties even if the Hilbert space is infinite 
dimensional. An operator k in a Hilbert space is said to be compact if it can be approximated 
arbitrarily closely in norm by finite rank operators. Let hl ,12, . . . be the eigenvalues of k* k 
for such a k, with hi+t 5 & and an eigenvalue of multiplicity n occurring n times in this 
sequence. (Here and in what follows, * denotes the adjoint for an operator.) Then h, -+ 0 
as n + co. It follows that the operator 1 in an infinite-dimensional Hilbert space is not 
compact. 

The set K: of all compact operators k in a Hilbert space is a C*-algebra. It is a two-sided 
ideal in the C*-algebra B of all bounded operators [6,19]. 

Note that the sets of finite rank, compact and bounded operators are all the same in a 
finite-dimensional Hilbert space. All operators in fact belong to any of these sets in finite 
dimensions. 



172 A.P Balachandran et al. /Journal of Geometry and Physics 18 (1996) 163-194 

I 

(An + k)(p) = x 

1 (An + k)(q) = An + k 

(a) (b) 
Fig. 5. (a) is the poset for the interval [r, s] when covered by the open sets [r, s[ and [r, s]; (b) shows the 
values of a generic element 11 + k of its algebra ,4 at its two points p and q. 

The construction of A for a poset rests on the following result from the representation 
theory of K. The representation of K by itself is irreducible [6] and it is the only IRR of K 
up to equivalence. 

The simplest nontrivial poset is PZ = (p, q} with q < p. It is shown in Fig. 5. It is the 
poset for the interval [r, s] (I < s) where the latter is covered by the open sets [r, s[ and 
[r, s]. The map from subsets of [r, s] to the points of P2 is 

[r,s[+ 9. (4.1) 

The algebra A for P2 is 

A = Cl + K = {Al + k: h E @,k E K}, (4.2) 

the Hilbert space on which the operators of A act being infinite dimensional. 
We can see this result from the fact that A has only two IRRs and they are given by 

p:Ll+k+A, q:hl +k+Ll fk. (4.3) 

This remark about IRRs becomes plausible if it is remembered that K has only one IRR. 
Thus the structure space of A has only two points p and q. An arbitrary element hl + k 

of A can be regarded as a “function” on it if, in analogy to the commutative case, we set 

(Al + k)(p) := h, (hl + k)(q) := Al + k. (4.4) 

Notice that in this case the function Al + k is not valued in @ at all points. Indeed, at different 
points it is valued in different spaces, @ at p and a subset of bounded operators on an infinite 
Hilbert space at q. ’ ’ 

Now we can use the hull kernel topology for the set (p, q}. For this purpose, consider 
the function k. It vanishes at p and not at q, so p is closed. Its complement q is hence open. 
So of course is the whole space [p, q). The topology of {p, q} is thus given by Fig. 5a and 
is that of the P2 poset just as we want. 

I1 Such an interpretation of A as functions on the poset can also be stated in a more rigorous way. In a 
paper under preparation, we will in fact show that A is isomorphic to the algebra of continuous sections of a 
suitable bundle over the poset, in the same way that the algebra of continuous functions on a manifold M is 
isomorphic to the algebra of continuous sections of the trivial one-dimensional complex vector bundle on M. 



t

a(a) = x1 a(P) = x2 

v 

47) = XlP, + A,P, + k,z 

6) b) 
Fig. 6. (a) shows the v poset and the association of an infinite dimensional Hilbert space ‘Hi to each of its 
arms; (b) shows the values of a typical element a = A,‘Pl + A2P2 + k12 of its algebra at its three points. 

We remark here that for finite structure spaces one can equivalently define the Jacobson 
topology as follows. Let IX be the kernel for the IRR X. It is the (two-sided) ideal mapped to 
0 by the IRR X. We set x -: y if IX c ZY thereby converting the space of IRRs into a poset. 
The topology in question is the topology of this poset. In our case, ZP = K, Z4 = {O] c ZP 
and hence q < p. This gives again Fig. 5a. 

Hereafter in this paper, by ‘ideals’ we always mean two-sided ideals. 
We next consider the v poset. It can be obtained from the following open cover of the 

interval [0, 11: 

[O, 11 = u a, O1 = [0,2/3[, 02 =]1/3, 11, Cr3 =]1/3,2/3[. (4.5) 
A. 

The map from subsets of [0, l] to the points of the v poset in Fig. 6a is given by 

10, l/31 + 01, 11/3,2/3[-+ y, P/3, 11 + B. (4.6) 

Let us now find the algebra A for the v poset. This poset has two arms 1 and 2. The first 
step in the construction is to attach an infinite-dimensional Hilbert space ‘Hi to each arm i 
as shown in Fig. 6a. Let Pi be the orthogonal projector on ‘Z& in Xl @ ?iz and lclz = (kl2) 
be the set of all compact operators in Xl CD ‘Z-Zz. Then [6] 

A = @PI + CP2 + Kt2. (4.7) 

The IRRs of A defined by the three points of the poset are given by Fig. 6b. It is easily 
seen that the hull kernel topology correctly gives the topology of the v poset. 

The generalization of this construction to any (connected) two-level poset is as follows. 
Such a poset is composed of several vs. Number the arms and attach an infinite-dimensional 
Hilbert space tii to each arm i as in Fig. 7a and b. To a v with arms i, i + 1, attach the 
algebra di with elements hi Pi + Ai+t Pi+1 + ki,i+t . Here ki, )Li+t are any two complex 
numbers, Pi, Pi+1 are orthogonal projectors on Hi, ‘Z&+1 in the Hilbert space Hi @ ?t!i+l 
and ki,i+t is any compact operator in ‘Fli @ Xi+]. This is as before. But now, for glueing 
the various Vs together, we also impose the condition A.j = & if the lines j and k meet at 
a top point. The algebra A is then the direct sum of di’s with this condition: 
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(a) (t.4 
Fig. 7. These figures show how the Hilbert spaces Hi are attached to the arms of two two-level posets. They 
also show the values of a generic member a of their algebras A at their points. 

d=@di, di =hiPi +Ai+lPi+l +ki,i+l (4.8) 

with hj = hk if lines j, k meet at top. 
Fig. 7a and b also show the values of an element Q = @[J.iPi + ki+tPi+r + ki,i+t] at 

the different points of two typical two-level posets. 
There is a systematic construction of A for any poset (that is, any “finite 7ii topological 

space”) which generalizes the preceding constructions for two-level posets. It is explained 
in the book by Fell and Doran [6] and will not be described here. 

It should be remarked that actually the poset does not uniquely fix its algebra as there 
are in general many nonisomorphic (noncommutative) C*-algebras with the same poset as 
structure space [20]. This is to be contrasted with the Gel’fand-Naimark result asserting 
that the (commutative) C*-algebra associated to a Hausdorff topological space (such as a 
manifold) is unique. The Fell-Doran choice of the algebra for the poset seems to be the 
simplest. We will call it A and adopt it in this paper. 

4.2. Finite-dimensional and commutative approximations 

In general, the algebra A is infinite dimensional. This makes it difficult to use it in explicit 
calculations, notably in numerical work. 

We will show that there is a natural sequence of finite-dimensional approximations to the 
algebra A associated to a poset. For two-level posets, the leading nontrivial approximation 
here is commutative while the succeeding ones are not. In this case, the commutative 
approximation C(d) has a suggestive physical interpretation. Further these approximations 
correctly capture the topology of the poset and can thus provide us with excellent models 
to initiate practical calculations, and to gain experience and insight into noncommutative 
geometry in the quantum domain. 

The existence of these finite-dimensional approximations relies on a remarkable property 
that characterizes the C*-algebra A associated to a poset, namely the fact that A is an 
approximately finite-dimensional (AF) algebra [12]. Technically this means that A is an 
inductive limit [6] of finite-dimensional C*-algebras (that is, direct sums of matrix algebras). 

Incidentally, we remark here that there exists a construction to obtain such sequence of 
finite-dimensional algebras directly from the topology of the poset. It is explained in [ 121 
and is based on the possibility of associating a diagram, the so-called Bratteli diagram, to 
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any finite To space. This construction also gives a new way, different from the method of 
Fell and Doran discussed in the previous section, to obtain the algebra A of a poset. We 
will not describe it here. Instead, we limit ourselves to discussing only a few examples. 

Let us start with the two-point poset of Fig. 5a. The algebra associated to it is A = Cl +K. 

Consider the following sequence of C*-algebras of increasing dimensions, the *-operation 
being hermitian conjugation: 

do = @, 
.A1 = ~(1, c) B c, 

A2 = M(2,c) CBC, 

A, = M(n,C> CB C, 

(4.9) 

where M(n, C) is the C*-algebra of n x n complex matrices. A typical element of d,, is 

an=[ ““0”” a], (4.10) 

where+,,, is an n x n complex matrix and h is a complex number. Note that the subalgebra 
M(n, C) consists of matrices of the form (4.10) with the last row and column zero. 

The algebra d,, is seen to approach A as n becomes larger and larger. We can make this 
intuitive observation more precise. There is an inclusion 

F n+l,n . ’ An * An+1 (4.1 I) 

given by 

(4.12) 

It is a *-homomorphism [6] since 

F n+l,n(an*) = [Fn+l,n(dl*. (4.13j 

Thus the sequence 

(4.14) 

gives a directed system of C*-algebras. Its inductive limit is A as is readily proved using 
the definitions in [6]. 

We must now associate appropriate representations to A, which will be good approxi- 
mations to the two-point poset. 
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(a) (b) 
Fig. 8. (a) is the poset for the algebra A, of (4.9): while (b) shows the values of a typical element a, of this 
algebra at its two points pn and qn. 

The algebra A1 is trivial. Let us ignore it. All the remaining algebras d,, have the following 
two representations: 
(a) The one-dimensional representation pn with. 

pn : a, + A. (4.15) 

(b) The defining representation qn with 

qn : a, -+ a,. (4.16) 

It is clear that these representations approach the representations p and q of A, given in 
(4.3), as n + co. 

The kernels ZPn and Zqn of pn and q,, are respectively 

(4.17) 

Since Zqn c Zpn. the hull kernel topology on the set (pn, qn) is given by q,, < pn. 

Hence (pn , qn} is the two-point poset shown in Fig. 8a and is exactly the same as the one 
in Fig. 5a. 

Thus the preceding two representations of A,, form a topological space identical to the 
poset of A. 

All this suggests that it is possible to approximate A by A, and regard its representations 
p,, and qn as constituting the configuration space. 

In our previous discussions, either involving the algebrac or the algebra A, we considered 
only their IRRs. But the representation qn of d,, is not IRR. It has the invariant subspace 

0 

0 

c ; . !I 0 

1 

(4.18) 

In this respect we differ from the previous sections in our treatment of d,, . 



A.P. Balachandran et al. /Journal of Geometry and Physics 18 (1996) 163-194 117 

The first nontrivial approximation is Al. It is a commutative algebra with elements 

(4.19) 

In this way, we can achieve a commutative simplification of A which will be denoted by 

CW. 
Let us now consider the v poset and its algebra A = @PI + X12 + @Pz acting on the 

Hilbert space ‘Ffl @ X2. Its finite-dimensional approximations are given by 

do = @, 
A1 =C@C, 
A2 =C@M(2,@)@@, 

A, =C@M(2n -2,@)@@, 

where a typical element of a, E An is of the form 

[ 

Al 0 0 

an = 0 m2n-2x2n-2 0 . 
0 0 A2 I 

As before, there is a *-homomorphism 

F n+l,n An --f dn+l, 

given by 

a, = 

r 

A.1 0 

0 m2n-2x2n-2 

0 1 0 + 

0 0 A2 

L 

Al 0 0 0 0 

0 Al 0 0 0 

0 0 m2n-2x2n-2 0 0 

0 0 0 A2 0 

0 0 0 0 A.; 1. (4.23) 

(4.20) 

(4.21) 

(4.22) 

We thus have a directed system of C*-algebras whose inductive limit is A [6], showing that 
d,, approximates A. 

The algebras dn have the following three representations: 

64 01, : a, + )il , 

(b) Bn : an + 12 , 

Cc) yn : an + a, . 
(4.24) 

Note that cr, and #?n are commutative IRRs while yn is not RR, just like q,, . 
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Fig. 9. (a) is the poset for the algebra A, defined in (4.9); while (b) shows the values of a typical eiement a, 
of this algebra at its three points cm, bn, yn 

Now the kernels of these representations are 

L, = 10) cl3 M(2n - 2, C) CB c, 

I&¶” = @ cl3 Men - 2,C) a3 {O), (4.25) 

zy” = WI. 

Since 

4% = zan a*d 1, c Ifin, (4.26) 

we set 

yn -c an. Yn -c Bn- (4.27) 

The poset that results is shown in Fig. 9. It is again the v poset, suggesting that A, and 
its representations cr, , /l,, , yn are good approximations for our purposes. 

Now the C*-algebra 

(4.28) 

is commutative and its representations at, ,!?I and yt also capture the poset topology cor- 
rectly. It will be denoted again by C(d). It seems to be the algebra with the minimum 
number of degrees of freedom correctly reproducing the poset and its topology. 

Is it possible to interpret Li? For this purpose, let us remember that the points of a 
manifold M are closed, and so correspond to the top or level one points of the poset. The 
latter somehow approximate the former. Since the values of ~1 at the level one points are 
ht and 12, we can regard ki as the values of a continuous function on M when restricted 
to this discrete set. The role of the bottom points in the poset and the value of at there 
is to somehow glue the top points together and generate a nontrivial approximation to the 
topology of M. 

We can explain this interpretation further using simplicial decomposition. Thus the in- 
terval [0, l] has a simplicial decomposition with [0] and [l] as zero-simplices and [0, l] as 
the one-simplex. Assuming that experimenters cannot resolve two points if every simplex 
containing one contains also the other, they will regard [0, l] to consist of the three points 
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~1 = [0], /It = [l] and yl =]0, l[. There is also a natural map from [0, l] to these points 
as in Section 2. Introducing the quotient topology on these points following that section, 
we get back the v poset. In this approach then, ht and L2 are the values of a continuous 
function at the two extreme points of [0, l] whereas the association of ht Pr +h2P2 with the 
open interval is necessary to cement the extreme points together in a topologically correct 
manner. 

(We remark here that the simplicial decomposition of any manifold yields a poset in the 
manner just indicated. We will also suggest at the end of Section 5 that a probability density 
cannot be localized at level one points, unless they are isolated and hence both open and 
closed. This result appears eminently reasonable in the context of a simplicial decomposition 
where level one points are points of the manifold. Reasoning like this also suggests that 
localization must in general be possible only at the subsets of the poset representing the 
open sets of M. That seems in fact to be the case. For, as will be indicated in Section 5, 
localization seems possible only at the open sets of a poset and the latter correspond to open 
sets of M.) 

5. Quantum theory using A 

The noncommutative algebra A is an algebra of observables. It replaces the algebra C(M) 
when M is approximated by a poset. We must now find the space E on which A acts, convert 
I into a pre-Hilbert space and therefrom get the Hilbert space ‘H by completion. 

Now as A is noncommutative, it turns out to be important to specify if A acts on E from 
the right or the left. We will take the action of A on E to be from the right, thereby making 
& a right d-module. 

The simplest model for & is obtained from A itself. As for the scalar product, note that 
(t* n)(n) is an operator in a Hilbert space XX if 4, r] E A and x E poset. We can hence find 
a scalar product (., .) by first taking its operator trace Tr on l-t, and then summing it over 
‘FIX with suitable weights pX : 

As remarked in Section 3, there is no need for & to be A. It can be any space with the 
following properties: 
(1) It is a right d-module. So, if 6 E & and a E A, then ca E 1. 
(2) There is a positive definite “sesquilinear” form (., +) on & with values in A. That is, if 

6, Q E 8, and a E A, then 

(4 E,n)~d, E,rl)*=(~l,U, (~,6)>0 and E,U=O+c=O. (5.2) 

Here “(c, c) > 0” means that it can be written as u*u for some a E A. 



180 Ad? Balachandran et al. /Journal of Geometry and Physics 18 (1996) 163-194 

The scalar product is then given by 

(t+ t?) = c A Tr(t, v)(x) . 
x 

(5.4) 

As 6*17(x), (e, q}(x), (6, vu)(x) or (a.$, v)(x) may not be of trace class [19], there are 
questions of convergence associated with (5.1) and (5.4). We presume that these traces 
must be judiciously regularized and modified (using for example the Dixmier trace [8,9]> 
or suitable conditions put on E or both. But we will not address such questions in detail in 
this article. 

When A is commutative and has structure space M, then an E with the properties described 
consists of sections of hermitian vector bundles over M. Thus, the above definition of 6 
achieves a generalization of the familiar notion of sections of hermitian vector bundles to 
noncommutative geometry. 

In the literature [8,9], a method is available for the algebraic construction of E. It works 
both when A is commutative and noncommutative. In the former case, Serre and Swan 

[8,9] also prove that this construction gives (essentially) all E of physical interest, namely 
all E consisting of sections of vector bundles. It is as follows. Consider A @CN = AN for 
some integer N. This space consists of N-dimensional vectors with coefficients in A (that 
is, with elements of A as entries). We can act on it from the left with N x N matrices with 
coefficients in A. Let e = [et] be such a matrix which is idempotent, e* = e, and hermitian, 

(et, r]) = (6, eq). Then, edN is an E, and according to the Serre-Swan theorem, every E 
[in the sense above] is given by this expression for some N and some e for commutative A. 
An I of the form edN is called a “projective module of finite type” or a “finite projective 
module”. 

Note that such & are right d-modules. For, if t E edN, it can be written as a vector 

(E’A2,- ,tN)withti ~dande$j=~‘.Theactionofa~donEis 

-$ + ta = (e’a,t*a, . . . , tNa). (5.5) 

With this formula for E, it is readily seen that there are many choices for (., .). Thus 
let g = [gij], gij E A, be an N x N matrix with the following properties: (a) gt = gji; 

(b) t’*gijtj z 0 and 4’*gijt’ = 0 + < = 0. Then, if r] = (q’, q2,. . . , $‘) is another 
vector in E, we can set 

(63 II) = ei*gijVi. (5.6) 

In connection with (5.6), note that the algebras A we consider here generally have unity. 
In those cases, the choice gii E @ is a special case of the condition gij E d. But if A has 
no unity, we should also allow the choice gij E @. 

The minimum we need for quantum theory is a Laplacian A and a potential function W, 
as a Hamiltonian can be constructed from these ingredients. We now outline how to write 
AandW. 

Let us first look at A, and assume in the first instance that & = A. 
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An element a E A defines the operator @,a(~) on the Hilbert space 7-l = eX3-IX, the 
map a -+ @,a(~) giving a faithful representation of A. So let us identify a with @,a(~) 
and A with this representation of A for the present. 

In noncommutative geometry [8,9], A is constructed from an operator D with specific 
properties on ‘H. The operator D must be self-adjoint and the commutator [D, a] must be 
bounded for all a E A: 

D*=D, [D,u]EB forall ucd. (5.7) 

Given D, we construct the ‘exterior derivative’ of any a E A by setting 

Sa = [D, a] := [D, &ax]. (5.8) 

Note that du need not be in A, but it is in B. 
Next we introduce a scalar product on B by setting 

(o, j3) = Tr[cz*/?] for all q B E B, (5.9) 

the trace being in 3-1. (Restricted to A, it becomes (5.4) with pX = 1. This choice of ,D* is 
made for simplicity and can readily be dispensed with. See also the comment after (5.4).) 

Let p be the orthogonal projection operator on A for this scalar product: 

p2 = p* z p, 

pa = a ifu E A, (5.10) 
per = 0 if(u,cr)=O and aed. 

The Laplacian A on A is defined using p as follows. 
We first introduce the adjoint 6 of d. It is an operator from Z? to A: 

6:B+d. (5.11) 

It is defined as follows. Consider all b E Z? for which (b, da) can be written as (a’, a) for 
all a E A. Here a’ is an element of A linear in the elements b and independent of a. Thus 

(b, da) = (a’, a), Vu and some a’ E A. (5.12) 

Then we write 

a’ = 6b. (5.13) 

A computation shows that 

6b = p[D, b]. (5.14) 

The Laplacian can now be defined as usual as 

Au = -6 da = -p[D, [D, a]]. (5.15) 

Notice that the domain of A does not necessarily coincide with A. 
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As for W, it is essentially any element of A. (There may be restrictions on W from 
positivity requirements on the Hamiltonian.) It acts on a wave function a according to 
a --f aW, where (aW)(n) = u(x)W(x). 

A possible Hamiltonian H now is -hA + W, k > 0, while a Schrodinger equation is 

au 
iat = -kAu +uW. (5.16) 

When E is a nontrivial projective module of finite type over A, it is necessary to introduce 
a connection and “lift” d from A to an operator V on E. Let us assume that I is obtained 
from the construction described before (5.5). In that case the definition of V proceeds as 
follows. 

Because of our assumption, an element { E E is given by 4 = (c’, c2, . . . , tN) where 
6’ E A and e$j = e’. Thus E is a subspace of A @ CN := AN: 

IcAN, AN = {(a',...,~~):.~ E A}. (5.17) 

Here we regard ui as operators on 7-1. Now AN is a subspace of Z? @I CN := BN where f3 
consists of bounded operators on Ii. Thus 

&GdNsBN, 
BN = {(a', . , *, aN) : oi = bounded operator on ‘7f). (5.18) 

Let us extend the scalar product (., .) on E (given by (5.6) and (5.4)) to f?N by setting 

(Cl, B) = &!'*gijBj, (a, p) = Tr(a, /I) for CX, B E BN. (5.19) 

Next, having fixed d on A by a choice of D as in (5.7) we define d on E by 

de = (dt’, d<‘, . . . , dcN). (5.20) 

Note that dc may not be in &, but it is in BN: 

d.$ E aN. (5.21) 

A possible V for this d is 

where 
(a) e is the matrix introduced earlier, 
(b) p is an N x N matrix with coefficients in L3: 

(5.22) 

(cl P = we, 
and 

(5.23) 

(5.24) 
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(d) p is hermitian: 

bY, PB) - (PW B) = 0. 

Note that if j?fulfills all conditions but (c), then p = eFe fulfills (c) as well. 
Condition (5.25) is equivalent to the compatibility of V with the hermitian structure 

(5.19): 

d(w B) = ((2, V/9 - Pa, B). (5.26) 

Having chosen a V, we can try defining V*V using 

(V6? Vrl) = (E, v*vrl), e, 17 E E, (5.27) 

where (., .) is defined by (5.19). A calculation similar to the one done to define the Laplacian 
(5.15) on A then shows that we can define A on & by 

Ar]= -qV*Vq, GEE, (5.28) 

where q is the orthogonal projector on E for the scalar product (., .). 
A potential W is an element of A. It acts on E according to the rule (1) following (5.1). 
A Hamiltonian as before has the form -LA + W , J, > 0 . It gives the Schrodinger 

equation 

We will not try to find explicit examples for A here. That task will be taken up for a 
simple problem in Section 6. 

We will conclude this section by pointing out an interesting property of states for posets. 
It does not seem possible to localize a state at the level one points (unless they happen to 
be isolated points, both open and closed). We can see this for example from Fig. 6b which 
shows that if a probability density vanishes at y. then hi (and k12) are zero and therefore 
they vanish also at cx and /l. It seems possible to show in a similar way that localization in 
an arbitrary poset is possible only at open sets. 

6. Line bundles on circle poset and 8-quantization 

A circle S’ = (e’@} is an infinitely connected space. It has the fundamental group H. Its 
universal covering space [21] is the real line Iw’ = [x: -cc < x < 00). The fundamental 
group Z acts on R’ according to 

x-+x+N, N E Z. 

The quotient of Iw’ by this action is S’, the projection map [w’ + S’ being 

x + e’2nx. 

(6.1) 

(6.2) 
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a-2 a-1 a0 ai a2 

. . . .,,~,~,r, . . . 

b-z b-1 bo bl b2 
Fig. 10. The figure shows the universal covering space of a circle poset 

Now the domain of a typical Hamiltonian for a particle on 5’ need not consist of smooth 
functions on 5’. Rather it can be obtained from functions $0 on Iw’ transforming by an IRR 

p0 : N + eiNe (6.3) 

of Z according to 

+e(x + N) = e’Ne+Cle(x). (6.4) 

The domain De(H) for a typical Hamiltonian H then consists of these @Q restricted to a 
fundamental domain 0 5 x 5 1 for the action of Z and subjected to a differentiability 
requirement: 

We(l) 
$0: @o(l) = e”@~(O); dx = e (6.5) 

In addition, of course, if dx is the measure on S’ used to define the scalar product of wave 
functions, then HI& must be square integrable for this measure. It is also assumed that r+k 
is suitably smooth in IO, l[. 

We obtain a distinct quantization, called &quantization, for each choice of eie. 
As has been shown earlier [5], there are similar quantization possibilities for a circle 

poset as well. The fundamental group of a circle poset is Z. Its universal covering space is 
the poset of Fig. 10. Its quotient, for example by the action 

N 1 Xj + xjj+3N, xj = aj Or bj of Fig. 10, N E B (6.6) 

gives the circle poset of Fig. 7b. 
In [5], it has been argued that the poset analogue of f3-quantization can be obtained from 

complex functions f on the poset of Fig. 10 transforming by an IRR of Z: 

f(xj+3) = e"f(xj). (6.7) 

While answers such as the spectrum of a typical Hamiltonian came out correctly, this 
approach was nevertheless affected by a serious defect: continuous complex functions on a 
connected poset are constants, so that our wave functions cannot be regarded as continuous. 

This defect was subsequently repaired in [22] by using the algebra C(d) for a circle poset 
and the corresponding algebra c(d) for Fig. 10. 

In this article we give an alternative description of the latter approach to quantization. We 
shall construct, much in the spirit of Section 5, the algebraic analogue of the trivial bundle 
on the poset PN(S’) with a ‘gauge connection’ such that the corresponding Laplacian gives 
the answer of Ref. [22]. 
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The algebra C(d) associated with the poset P2N(S1) is given by 

C(d) = {c = (At, h2) @ (A27 h3) 63 ... @ (AN, Al): Ai E c). (6.8) 

The “finite projective module of sections” & associated with the trivial bundle is taken to 
be C(d) itself so that the e of Section 5 is the identity. To avoid confusion between the dual 
roles C(d) and 8 of the same set, we indicate the elements of E using the letter /.L (whereas 
we use )r. for those of C(d)): 

& = ( x, x', . . . : x =(~1,~2)~(LL2,CL3)$...~(~N,~l). 

X’= (~;,cL;)~(cL;,cL;)$“‘~(LL~,~;),...; Pi,P: E cl. (6.9) 

Here E is a C(d)-module, with the action of c on X given by 

XC = (CLlkl, P2kd G3 (CL2h2, k3h3) Cl3 ... 63 (CLNAN, Flk1). (6.10) 

The space E has a sesquilinear form (+, .) valued in C(d): 

ix’, x) := d;*h L&2) CT3 (~4~2, &3) Q3.. . CB h-&N> &I) E C(d). 

(6.11) 

An equivalent realization of C(d) (and hence of E) can be given in terms of N x N 
diagonal matrices, typical elements of C(d) and & in this new realization being 

-C = diag(hi, AZ, . . . ,h~), F= diagbl, P2, * *. 9 CLN). (6.12) 

The scalar product associated with (6.11) can be written, after a resealing, as 

(X’, 51) = 5 I.L(i*kj = Trx’*x. (6.13) 
j=l 

In order to define a Laplacian, we need an operator D like in (5.7) to define the ‘exterior 
derivative’ d of (5.8), and a matrix of one-forms p with the properties (5.23)-(5.25) which 
is the analogue of the connection form. Assuming the identification of N + j with j, we 
take for D the self-adjoint matrix with elements 

1 
Dij = -(m*6i+l,j + mAi,j+l), i, j = 1, . . . , N, 

4% 
(6.14) 

where m is any complex number of modulus one, mm* = 1. As for the connection p, we 
take it to be the hermitian matrix with elements 

Pij = 4, -(D*m*8i+l,j + am&,j+l), D = evieIN - 1, i, j = 1, . . . , N. (6.15) 

One checks that the curvature of p vanishes, namely I2 

dp + p2 = 0. (6.16) 

I2 A better analysis should take into account the structure of the ‘junk forms’ [8,9]. This can be done, but 
we do not give details here. 
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It is also possible to prove that p is a ‘pure gauge’, that is that there exists aT E C(d) such that 
p=F’d?,onlyfor0=2nk,k anyinteger.(If~=diag(hl,h~,...,h~),anysuch~will 
be given by A, = A , h2 = $nklN;1, . . . . hi = $~k(j-l)lN~, .._, kN = ei2nk(“‘-1)lNA, A 

not equal to 0.) These properties are the analogues of the the well-known properties of 
the connection for a particle on S’ subjected to Gquantization, with single-valued wave 
functions on 5’ defining the domain of the Hamiltonian. If the Hamiltonian with the domain 
(6.5) is -d2/dx2, then the Hamiltonian with the domain Do(h) consisting of single-valued 
wave functions is -(d/dx + i0)2 while the connection one-form is i0 dn. 

We next define V on & by 

vx = [D, X] + p, (6.17) 

in accordance with (5.22), e being the identity. The covariant Laplacian As can then be 
computed as follows. 

We write 

(VT, VX) = (Z’, v*vsT>, (6.18) 

as in (5.27). Now the projection operator ~7 in the present case is readily seen to be defined 

by 

(qM)ij = Mii6ij, no summation on i, (6.19) 

M being any N x N matrix. Hence 

(AeST)ij = -(V*VF)iiSij, 

-(V*Vjr)ii = [ - [D, [D, Xl] - 2PiD, xl - P2x]ii 

_ zcLi + eiOIN A+1 ; 1 
i = 1,2,..., N; /-‘,N+l = 111. 

The solutions of the eigenvalue problem 

(6.20) 

(6.21) 

are 

A. = )ck = 9 cos(k + 8) - 1 , 1 
x = jr(k) =diag(~~‘,$) ,..., PC)), k=rn$. m-l,2 ,..., N, (6.22) 

where 

LL(k) = A(kjeikj + B(k)e-W, 
J 

A(k), B(k) E ,p. (6.23) 

These are exactly the answers in Ref. [5] but for one significant difference. In Ref. 151, 
the operator A did not mix the values of the wave function at points of level one and level 
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two, resulting in a double degeneracy of eigenvalues. That unphysical degeneracy has now 
been removed because of a better treatment of continuity properties. The latter prevents us 
from giving independent values to continuous probability densities at these two kinds of 
points. Note that the approach of Ref. [22] is equivalent to the present one and also give 
(6.23) without the spurious degeneracy. 

7. Abelianization and gauge invariance 

7.1. Commutative subalgebras and unitary groups 

As remarked in Section 4.2, the C*-algebras for our posets are approximately finite dimen- 
sional (AF) [ 12,131. Besides the ones described there, they have additional nice structural 
properties which can be exploited to develop relatively transparent models for E. Further- 
more, these properties are of use in the analysis of the limit where the number of points 
of the poset approximation is allowed to go to infinity. This will be explored in a future 
publication. 

Here we will describe very simple and physically suggestive presentations of such alge- 
bras in terms of their maximal commutative subalgebras. We will then use this presentation 
to derive the commutative algebra C(d) using a gauge principle. 

We will start with some definitions [ 12,131. The commutant A’ of a subalgebra A of A 
consists of all elements of A commuting with all elements of A: 

A’={x~d:xy=yx,Vy~A). (7.1) 

A maximal commutative subalgebra C of A is a commutative C*-subalgebra of A which 
coincides with its cornmutant, C’ = C. 

The C*-algebras A we consider have a unity 1. We therefore have the concepts of the 
inverse and unitary elements for A. 

Let C be a maximal commutative subalgebra of A and let U be the normalizer of C among 
the unitary elements of A: 

U = (u E A I u*u = 1; u*cu E C if c E C} . (7.2) 

One can show [ 131 that if u E U, then u* E U, so that 24 is a unitary group. 
For an AF algebra A, a fundamental result in [ 131 states that the algebra generated by C 

and U coincides with A. If Ml, MT, . . . , are subsets of the C*-algebra A, and we denote by 

041, M2r . . . , ) the smallest C*-subalgebra of A containing U, Mn, then the above result 
can be written as 

A = (C, U). (7.3) 

Next note that C in general has unitary elements and hence U fl C # 0. Now U n C is 
a normal subgroup of U. We can in fact write U as the semidirect product tx of the group 
U n C with a group U isomorphic to U/[U r3 C]: 

u = [uric] ku. (7.4) 
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Hence, by (7.3), 

A= (C, U). (7.5) 

This result is of great interest for us. 
The group U can be explicitly constructed in cases of interest to us. We will do so below 

for the two-point and v posets. The general result for any two-level poset follows easily 
therefrom. 

We will now see how A can be realized as operators on a suitable Hilbert space. 
Let t?be the space of IRRs or the structure space of C. Since the latter is a commutative 

AF algebra, we can assert from known results [ 121 that the space c^ is a totally discon- 
nected Hausdorff space, that is, the connected component of each point consists of the point 
itself. 

If, in the spirit of the Gel’fand-Naimark theorem, we regard elements of C as functions 
on c? each x E zdefines an ideal IX of C: 

Ix = (f E c 1 f(x) = 0). (7.6) 

Such ideals are called primitive ideals. They have the following properties for the commu- 
tative algebra C: (a) Every ideal is contained in a primitive ideal, and a primitive ideal is 
maximal, that is, it is contained in no other ideal; (b) A primitive ideal I uniquely fixes a 
point x of ?by the requirement Z X = I. Thus ?can be identified with the space Prim(?) of 
primitive ideals. 

Now if I, E Prim(E) and c E C, then cu*ZXu = u*[ucu*]ZXu = u*Z,u since ucu* E Z,. 
Similarly u*ZXuc = u*ZXu. Hence u*ZXu is an ideal. That being so, there is a primitive 
ideal ZY containing u*ZXu, u*ZXu s ZY. Hence IX s uZ+*. Since uZYu* is an ideal too, we 
conclude that I, = uZYu* or u* ZXu = ZY. Calling 

y := u*x = u-lx, (7.7) 

we thus get an action of l4 on r!? With respect to the decomposition (7.4), only the elements 
in U act not trivially on C, whereas elements in 24 fl C act as the identity. 

Let l’(c) be the Hilbert space of square summable functions on c^: 

(g, h) = Cg(x)*h(x) < 00, vg, h E c'<c^>. 
x 

(7.8) 

It is a striking theorem of [ 131 that A can be realized as operators on e2 (z) using the 
formulae 

(h . f)(x) = h(x)f(x), (h . u>(x) = h(u*x), Vf E c, u E u, h E l”(Z). 
(7.9) 

We have shown the action as multiplication on the right in order to be consistent with the 
convention in Section 5. Also the dot has been introduced in writing this action for a reason 
which will immediately become apparent. 
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This realization of A can give us simple models for E. To see this, first note that we had 
previously used A or ed” as models for E. But as elements of C are functions on zjust like 
h, we now discover that they are also d-modules in view of (7.9), the relation between the 
dot product of (7.9) and the algebra product (devoid of the dot) being 

c f = cf, -1 c.u = ucu . 

The verification of (7.10) is easy. 

(7.10) 

Thus C itself can serve as a simple model for 1. 
We may be able to go further along this line since certain finite-projective modules 

over C may also serve as E. Recall for this purpose that such a module is ECN where 
E is an N x N matrix with coefficients in C, which is idempotent and hermitian (E* = 
E, E* = E, where (E*)j = (Ej)*). A vector in this module is c = (c’, c*, . . . , tN) with 

e’ = Eiaj, uj E C. Now consider the action c + 6. u where (6 . u)’ = u(Ejaj)u-‘. The 

vector 6 . u remains in ECN if 

L&U-~ = Ej, that is, uEu-’ = E. (7.11) 

Since C anyway acts on ECN, we get an action of A on ECN when (7.11) is fulfilled. Thus 
ECN is a model for & when E satisfies (7.11). 

The scalar product for e*(F) written above may not be the most appropriate one and may 
require modifications or regularization as we shall see in Section 7.2. We only mention that 
the problem will arise with (7.8) because elements of E must belong to e*(C), a restriction 
which may be too strong to give an interesting E from C or an interesting finite-projective 
module thereon. 

7.2. The two-point poset 

We will illustrate the implementation of these ideas for the two-point, the v and finally 
for any two-level poset. That should be enough to see how to use them for a general poset. 

We will treat the two-point poset first. Its algebra is (4.2). In its self-representation q, 
it acts on a Hilbert space 7f(= ‘FL,). Choose an orthonormal basis h, (n = 1,2, . . . , > 
for ‘7-L and let P,, be the orthogonal projector operator on Ch, . The maximal commutative 
subalgebra is then 

(7.12) 

The structure space of C is 

cI={1,2,...;cm}, (7.13) 

where 

(4 n : 1 -+ 1 := 1 (n), pm + 6,, := Pm(n); (7.14) 

(b) co:l+ l:=l(co), Pm-+o:=pm(co). (7.15) 
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The topology of c^is the one given by the one-point compactification of { 1,2, . . .) by 
adding co. A basis of open sets for this topology is 

InI; n= 1,2,...; ok = (m 1 m 2 k] u {m}. (7.16) 

A particular consequence of this topology is that the sequence 1,2, . . , converges to ~XJ. 
This topology is identical to the hull kernel topology [6]. Thus for instance, the zeros of 

P,,andl -C~~~Piare(1,2 ,..., ;i,n+l,..., co]and{1,2 ,..., k-l),respectively, 
where the hatted entry is to be omitted. These being closed in the hull kernel topology, their 
complements, which are the same as (7.16), are open as asserted above. 

The group U is generated by transpositions u(i, j) of hi and hj for i # j: 

~(i, j)hi = hj, ~(i, j)hj = hi, ~(i, j)hk = hk if k # i, j. (7.17) 

Since the ideals of n and 00 are 

L = 11 - Pn, Pl, P2, . . . , E, Pn+l, . . .I, ko={P1,P2,...~, (7.18) 

we find, 

U(i, j)*Zju(i, j) = Zj, U(i, j)*ZjU(i, j) = Zi, 
u(i, j)*zku(i, j) = zk if k # i, j, (7.19) 

u(i, j)*Z,u(i, j) = I,, 

u(i, j)i = j, u(i, j)j = i, 

u(i, j)k = k if k # i, j, 

u(i, j)cc = 00. 

(7.20) 

It is worth noting that the representation (7.9) of A splits into a direct sum of the IRRs 
p, q for the two-point poset. The proof is as follows: 00 being a fixed point for U, the 
functions supported at co give an d-invariant one-dimensional subspace. It carries the IRR 
p by (4.3) and (7.15). And since the orbit of n under U is { 1,2 , . . .}, the functions vanishing 
at 03 give another invariant subspace. It carries the IRR q by (4.3) and (7.14). 

There is a suggestive interpretation of the projection operators P,, . (See also the second 
paper of Ref. [ 121.) The IRR q of A corresponds to the open set [r, s[ which restricted to 
C splits into the direct sum of the IRR’s 1,2, . . . The IRR p of A corresponds to the point 
s which restricted to C remains IRR. We can think of 1,2, . . ., as a subdivision of [r, s[ 
into points. Then P,, can be regarded as the restriction to ?of a smooth function on [r, s] 
with the value 1 in a small neighbourhood of n and the value zero at all m # n and 00. In 
contrast, 1 is the function with value 1 on the whole interval. Hence it has value 1 at all n 
and 00 as in (7.14-7.15). This interpretation is illustrated in Fig. 11. 

As mentioned previously, there is a certain difficulty in using the scalar product (7.8) for 
quantum physics. For the two-point poset, it reads 

(gv h) = c g(n)*h(n) + g(m)*h(oo), 
n 

(7.21) 
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Fig. Il. The figure shows the division of [r, s[ into an infinity of points 1,2, ., which get increasingly 
dense towards 00 or p. The point cm, being a limit point of 1,2, ., is distinguished by a star. According to 
the suggested interpretation, these points and 00 correspond to IRRs of C while q = { 1,2, .] and p = CCI 
correspond to IRRs of Sz. 

where cc is the limiting point of { 1,2, . . .) . Hence, if h is a continuous function, and 
h(m) # 0, then limn+oo h(n) = h(m) # 0, and (h, h) = co. In other words, continuous 
functions in e’(F) must vanish at 00. This is in particular true for probability densities 
found from E. It is as though 00 has been deleted from the configuration space in so far as 
continuous wave functions are concerned. 

There are two possible ways out of this difficulty. (a) We can try regularization and 
modification of (7.8) using some such tool as the Dixmier trace [8,9]; (b) we can try changing 
the scalar product for example to (. , .)L, E > 0, where 

Wd: = F .,:, -g(n)*h(n) + g(oo)*h(wo), (7.22) 

the choice of 6 being at our disposal. 
There are minor changes in the choice of u(i, j) if this scalar product is adopted. 

7.3. The v poset and general two-level posets 

In the case of the v poset, there are Hilbert spaces 1-11 and ‘Hz for each arm, A being 
the algebra (4.7) acting on 3-1 = tit @ ti2. After choosing orthonormal basis h?, i= 

1,2,n= 1,2 ,...) where the superscript i indicates that the basis element corresponds to 
7&, and orthogonal projectors P$’ on @hz’, the algebra C carrbe written as 

c = (Pl, u,P;l); P*, u,P;“‘). (7.23) 

Here Pi are projection operators on Xi. 
The group U as before is generated by transpositions of basis elements. 
The space cconsists of two sequences n(t), n(*) (n = 1,2, . . .) and two points co(l), 

WC*), witi n(j) converging to 00~~): 

z= (nG), ,(O; i=1,2;n=1,2 ,... }. (7.24) 

Their meaning is explained by 

pi(&)) = 6.. 
rJ ’ 

Pz)(n(j)) = SijSmn, (7.25) 

pi (,(j)) = 6.. 
I I  ’ 

p;)(,W) = 0 (7.26) 
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(b) 

Fig. 12. The figures show the structure ofzfor three typical two-level posets. 

The visual representation of c^is presented in Fig. 12a. 
The remaining discussion of Section 7.2 is readily carried out for the v poset as also for 

a general two-level poset. So we content ourselves by showing the structure of t?for a v v 

and a circle poset in Figs. 12b,c. 

7.4. Abelianization from gauge invariance 

The physical meaning of the algebra U c A is not very clear [22], even though it is 
essential to reproduce the poset as the structure space of A. 

But if its role is just that and nothing more, is it possible to reduce A utilizing U or a 
suitable subgroup of U in some way and get the algebra C(d)? The answer seems to be yes 
in all interesting cases. We will now show this result and argue also that this subgroup can 
be interpreted as a gauge group. 

Let us start with the two-point poset. It is an “uninteresting” example for us where our 
method will not work, but it is a convenient example to illustrate the ideas. 

The condition we impose to reduce A here is that the observables must commute with U. 
The commutant U’ of U in A is just cl. The algebra A thus gets reduced to a commutative 
algebra, although it is not the algebra we want. 

The next example is a “good” one, it is the example of the v poset. The group U here has 
two commuting subgroups U(l) and UC*). UC’) . is generated by the transpositions u(k, I; i) 

which permute only the basis elements hf) and hl(‘): 
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u(k, 1; i)hf) = hj’), u(k, 1; i)hy) = hf’; 

u(k, E; i)hg) = hg) if 172 $ {k, I]. 

193 

(7.27) 

These are thus operators acting along each arm of v, but do not act across the arms of V. 

The full group U is generated by U (l) and UC*) and the elements transposing hj’) and hy). 
Let us now require that the observables commute with U(l) and UC*). They are given by 

the commutant of (U(‘), UC*)), the latter being 

(UC’), U(2))’ = CP, + @P* (7.28) 

in the notation of (4.7). This algebra being isomorphic to (4.28), we get the result we want. 
We can also find the correct representations to use in conjunction with (7.28). They are 

isomorphic to the IRRs of A when restricted to (U (l), U(*))‘. This is an obvious result. 
The procedure for finding the algebra C(d) and its representations of interest for a general 

poset now follows. Associated with each arm i of a poset, there is a subgroup U@) of U. It 
permutes the projections, or equivalently the IRRs (like the .ci) of (7.24) associated with 
this arm, while having the remaining projectors, or the IRRs, as fixed points. The algebra 
C(d) is then the commutant of (U. UC’))): I 

C(d) = (U.U”))‘. I (7.29) 

The representations of C(d) of interest are isomorphic to the restrictions of IRRs of A to 

C(d). 
In gauge theories, observables are required to commute with gauge transformations. In 

an analogous manner, we here require the observables to commute with the transformations 
generated by UN. The group generated by U (9 thus plays the role of the gauge group in 
the approach outlined here. 

8. Final remarks 

In this article, we have described a physically well-motivated approximation method to 
continuum physics based on partially ordered sets or posets. These sets have the power to 
reproduce important topological features of continuum physics with striking fidelity, and 
that too with just a few points. 

In addition, there is also a remarkable connection of posets to noncommutative geometry. 
This connection comes about because a poset can be thought of as a ‘noncommutative 
lattice’, being the dual space (the space of representations) of a noncommutative algebra, 
and the latter is a basic algebraic ingredient in noncommutative geometry. The algebra of 
a poset also has a good intuitive meaning, being the analogue of the algebra of continuous 
functions on a topological space. 

It is our impression that the above connection is quite deep, and can lead to powerful and 
novel schemes for numerical approximations which ate also topologically faithful. They 
seem in particular to be capable of describing solitons and the analogues of QCD O-angles. 

Much work of course remains to be done, but there are already persuasive indications of 
the fruitfulness of the ideas presented in this article for finite quantum physics. 
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